

LMRWMO: Watershed Modeling 101

Overview of H&H and Water Quality Modeling

Michael McKinney and Greg Williams Barr Engineering Co. July 10, 2024

Agenda

.....

1. H&H and Water Quality Modeling Overview

- Major functions of models
- Model applications
- Software Overview
- 1D vs 2D

2. Model Development

- General required inputs
- Model resolution
- Monitoring and calibration
- Maintenance
- 3. General Discussion / Q&A

H&H and Water Quality Modeling Overview: Water Cycle

.....

Water Cycle

- $\sqrt{}$ = typically modeled
- X = typically not modeled
- A = typically modeled, but may require specialized modeling software

In addition to water cycle, water quality models also model mobilization, fate, and transport of pollutants*

H&H and Water Quality Modeling Overview: Definitions

.....

H&H Modeling

- H&H = hydrology and hydraulics
- Hydrology* = modeling of rainfall and generation of runoff
- Hydraulics* = storage, routing, and convenance of runoff
- Typically, more complex hydraulics than water quality models ("dynamic" vs "kinematic" wave)
- Typically, shorter time frames than WQ models (e.g., modeling single rainfall event, weeks of rainfall, etc.)

H&H and Water Quality Modeling Overview: Definitions

.....

Water Quality Modeling

- WQ = water quality
- WQ models also model H&H! Often, more simplified than dedicated H&H models.
- Models mobilization, fate, and transport of particulate and dissolved pollutants (e.g., TSS, TP, TKN, Cu, Pb, Zn, Hydrocarbons, etc.).
- Typically longer time frame than dedicated H&H models (e.g., models a 50-year period)

H&H and Water Quality Modeling Overview: Example Applications

.....

H&H Modeling

- How do I design this complex outlet structure to retain the 10-year event?
- Why does this manhole cover blow off anytime we have an intense rainfall event?
- Why did this landlocked wetland flood in 2019, and was bone dry in 2022?
- How should I design storm sewer to serve a new development?
- Will structures around this lake be flooded if we get a 10-year rainfall event?
- What does 500-year flooding look like across the WMO? How might a 500-year event impact infrastructure and streams?

WQ Modeling

- What would be the performance of a traditional sand filtration BMP in this location? Is ironenhanced infiltration worth pursuing?
- What is the average annual watershed loading of total phosphorus to Sunfish Lake?
- How large should I size the forebay of a constructed wetland serving a new development to minimize forebay and wetland maintenance?
- How much area do I need to dedicate to an infiltration BMP to meet municipal water quality permitting requirements?

H&H and Water Quality Modeling Overview: Example Applications (cont.)

.....

H&H Modeling

- Developers & Cities, small scale:
 - Design of stormwater conveyance systems
 - Evaluation of permitting compliance
- Cities / WMOs / WDs, large scale:
 - Large scale planning efforts
 - Development of stormwater management plans
 - Prioritization of flood mitigation projects
 - Flood response planning
 - Spill response planning

WQ Modeling

- Developers & Cities, small scale:
 - Design of water quality treatment best management practices (BMPs)
 - Evaluation of permitting compliance
- Cities / WMOs / WDs, large scale:
 - Evaluation and tracking of TMDL / WLA compliance
 - Prioritization and cost-benefit evaluation of water quality improvement projects
 - Evaluation and targeting of pollutant loading "hot spots"

H&H and Water Quality Modeling Overview: Modeling Software Overview

H&H and Water Quality Modeling Overview: What do Models Look Like?

.....

HydroCAD

H&H and Water Quality Modeling Overview: What do Models Look Like?

Duplicate

Device Na

Type

Normal

Overflow

Infiltratio

Particle Removal Scale

1

Orifice Diameter (inc 12 Orifice Discharge 1

Factor

.....

MIDS

		P [®] Wa	atersheds								Х
		Help	SLAMM Calib	List Add	Duplicate	Delete	Clear	Check	Cancel	OK	
		Selec	t Watersh		e Wate	Watershed 1					
		Water	shed 1	Outfl	ow Device for	Surface Ru	ı WET	r_pond		•	
					Outflow Devic	e for Perco	Non			•	
							1				
					Total A	Area (acres))	150	_		
				P	ervious Area C	urve Numb		80	_		
				Indirec	tly Connected	Imperv. Fr	· [0	-		
				Sc	ale Fractor for	Particle Lo		1	-		
				Directly C	onnected Imp	ervious Are	Va	acuum Si	we No	t Swep	t
				Co	nnected Impe	rvious Frac		0		0.25	-
			-	<) Appression Str	orade (inch		0.02		0.02	_
Clear Check Cancel OK				- '	Jepression Sto	Jiage (Inch		0.02		0.02	_
WET_POND POND Outflow Devices *OUT* V	Detenti	on Pond Parar	neters		Impervious	s Runoff Co		1		1	
	Bottom Elov		lictory	Sca Imperv	Scale Factor fo	or Particle L		1		1	
	BOLLOIN Elev	Area Vo	lume Infilt Rat		vious Sweep	Frequency		0	-		
		Acres A	Ac-Ft In/hr	Sv	veeping Efficie	ncy Scale F	: [1	-		
	Permanent P	2			Vacuum Swe	eeping Sea	,	Start	5	Stop	
			10 0					101		1231	
	1000 - 001		5 0			_					
OUT ▼	Perm Pool Out	ORIFI	CE 💌								

P8

H&H and Water Quality Modeling Overview: Results Examples

.....

H&H Modeling

- Stage hydrographs showing storage area stage over time
- Flow / velocity hydrographs
- Maximum storage volume and flooding extents
- Pipe design capacity utilized
- Rainfall and runoff depth from surfaces within the watershed
- Really... Almost anything H&H related!

H&H and Water Quality Modeling Overview: Results Examples

.....

Water Quality Modeling

- Annual performance of individual BMPs (e.g., 60% TP and 90% TSS reduction for wet pond A)
- Areal pollutant loading and loading "hot spot" mapping
- Total pollutant loading to waterbodies and/or leaving municipal boundary (useful for TMDL/WLA tracking)
- Event-based runoff and pollutant loading results
- Particulate vs dissolved pollutant constituent removal performance at BMPs

H&H and Water Quality Modeling Overview: 1D vs 2D modeling

.....

H&H Modeling: 1D vs 2D

- 1D: all runoff and hydraulic elements connected using 1D elements (e.g., nodes and links)
- 2D: surface runoff routing and overland flow routing conducted using 2D grid
- Note: a majority of "2D" models contain both 2D and 1D elements. E.g.,
 - 2D network used to route runoff, route overland flow, and fill storage areas.
 - 1D network used to represent storm sewer and simple channels

H&H and Water Quality Modeling Overview: 1D vs 2D modeling

111111111111111111

H&H Modeling: 1D result examples

H&H and Water Quality Modeling Overview: 1D vs 2D modeling

.....

H&H Modeling: 2D result examples

barr.com

Model Development: General Inputs

иннинни.

- Both:
 - Rainfall data (H&H: individual events, WQ: years of events)
 - Subwatershed data: area, imperviousness, slope, time of concentration, etc.)
 - Infiltration data: min/max infiltration parameters, soil type, etc.
- H&H:
 - Detailed hydraulic information (e.g., complex outlet structures, entire storm sewer network, detailed surface storage areas, etc.)
 - Digital elevation model (e.g., 2022 LiDAR)
- Water Quality:
 - Detailed BMP information (bathymetric storage, infiltration rate, residence time, etc.)
 - Detailed water quality and pollutant information (erosivity, sediment accumulation rate, pollutant constituent concentration, particulate sedimentation rate, etc.)

Model Development: Model Resolution

.....

- Water Quality Models: typically "basin scale"
 - Basin scale = resolution required to capture drainage to large basins and BMPs
- Urban H&H models: typically "intersection scale"
 - Intersection scale = subwatershed divides to individual inlets and/or groups of inlets (e.g., clusters of catch basins at intersection).

Model Development: Calibration

иннинний.

- Calibration is "the process of adjusting model parameters to match experimental data"
- H&H calibration overview:
 - Representative monitoring locations selected.
 - Flow and/or stage is monitored (LVQ monitoring, lake stage monitoring, etc.).
 - Model is adjusted to match monitoring data, typically for representative events.
- Calibration "light":
 - Model event that occurred, attempt to match benchmark, observed flooding (e.g., observed flow rate, observed max flooding depth).

- Water quality calibration overview:
 - Representative monitoring locations selected.
 - Event based sampling is conducted: flow monitoring is collected for event (volume), samples are collected to obtain representative pollutant concentrations (mg/L) to get mass loading for event
 - Model is adjusted to match monitoring data, typically for groups of events (e.g., model calibrated to cumulative pollutant loading for 2-3 year period)

Model Development: Calibration

.....

- What is the value of calibration?
 - Provides more confidence that model is performing accurately.
 - Helps to identify critical model assumption updates.
 - Has helped to identify maintenance issues / other issues not captured in base modeling assumptions

barr.com

Model Development: Maintenance

.....

- Model maintenance is often overlooked / not considered during model development.
- Model maintenance strategy examples:
 - Example 01: City has annual model maintenance plan. Updates model and mapping every year based on all developments tracked in maintained GIS storm sewer network data.
 - Example 02: WD has plan to update model every 5-years. Requires coordination with partner cities to get list of "critical" updates in past 5-years.
 - Example 03: City does not plan on updating models. Models will eventually be redeveloped from scratch.
- How often should models be maintained?
 - Highly variable based on intensity of development and/or redevelopment.
 - Highly variable based on use applications of model.
 - No hard and firm recommendation this is a topic many Cities / WDs / WMOs are trying to figure out as modern datasets are being published (e.g., 2022 LiDAR).

barr.com

Model Development: Ownership

.....

Ownership Examples:

- For all City, WD, or WMO modeling projects I have been involved with, the City/WD/WMO owns the model.
- Does the organization use the model?
 - In some cases, yes: the model is handed over and organization staff utilize and update the model (less common)
 - In other cases, no: the owner does not have modelers on staff and relies on ongoing relationship with the consultant to house / update / use the model (more common).
 - In these cases, "Viewer" versions of many models can be provided that allow owner to view model information and results (e.g., create tables, create graphs, view data, etc.), but not update / edit / rerun the model.
 - "Viewer" model versions are often free.

General Discussion: Q&A

.....

Michael McKinney (<u>MMcKinney@barr.com</u>) Greg Williams (<u>GWilliams@barr.com</u>)

Barr Engineering Co.

